Induction of antigen-specific tolerance through hematopoietic stem cell-mediated gene therapy: The future for therapy of autoimmune disease?
Miranda A. Coleman, Raymond J. Steptoe,
The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
Abstract
Based on the principle that immune ablation followed by HSC-mediated recovery purges disease-causing leukocytes to interrupt autoimmune disease progression, hematopoietic stem cell transplantation (HSCT) has been increasingly used as a treatment for severe autoimmune diseases. Despite clinically-relevant outcomes, HSCT is associated with serious iatrogenic risks and is suitable only for the most serious and intractable diseases. A further limitation of autologous HSCT is that relapse rates can be high, suggesting disease-causing leukocytes are incompletely purged or the environmental and genetic determinants that drive disease remain active. Incorporation of antigen-specific tolerance approaches that synergise with autologous HSCT could reduce or prevent relapse. Further, by reducing the requirement for highly toxic immune-ablation and instead relying on antigen-specific tolerance, the clinical utility of HSCT could be significantly diversified. Substantial progress has been made exploring HSCT-mediated induction of antigen-specific tolerance in animal models but studies have focussed on primarily on prevention of autoimmune diseases. However, as diagnosis of autoimmune disease is often not made until autoimmune disease is well developed and populations of autoantigen-specific pathogenic effector and memory T cells have become well established, immunotherapies must be developed to address effector and memory T-cell responses which have traditionally been considered the key impediment to immunotherapy. Here, focusing on T-cell mediated autoimmune diseases we review progress made in antigen-specific immunotherapy using HSCT-mediated approaches, induction of tolerance in effector and memory T cells and the challenges for progression and clinical application of antigen-specific ‘tolerogenic’ HSCT therapy.
http://www.sciencedirect.com/science...68997212002455
Miranda A. Coleman, Raymond J. Steptoe,
The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
Abstract
Based on the principle that immune ablation followed by HSC-mediated recovery purges disease-causing leukocytes to interrupt autoimmune disease progression, hematopoietic stem cell transplantation (HSCT) has been increasingly used as a treatment for severe autoimmune diseases. Despite clinically-relevant outcomes, HSCT is associated with serious iatrogenic risks and is suitable only for the most serious and intractable diseases. A further limitation of autologous HSCT is that relapse rates can be high, suggesting disease-causing leukocytes are incompletely purged or the environmental and genetic determinants that drive disease remain active. Incorporation of antigen-specific tolerance approaches that synergise with autologous HSCT could reduce or prevent relapse. Further, by reducing the requirement for highly toxic immune-ablation and instead relying on antigen-specific tolerance, the clinical utility of HSCT could be significantly diversified. Substantial progress has been made exploring HSCT-mediated induction of antigen-specific tolerance in animal models but studies have focussed on primarily on prevention of autoimmune diseases. However, as diagnosis of autoimmune disease is often not made until autoimmune disease is well developed and populations of autoantigen-specific pathogenic effector and memory T cells have become well established, immunotherapies must be developed to address effector and memory T-cell responses which have traditionally been considered the key impediment to immunotherapy. Here, focusing on T-cell mediated autoimmune diseases we review progress made in antigen-specific immunotherapy using HSCT-mediated approaches, induction of tolerance in effector and memory T cells and the challenges for progression and clinical application of antigen-specific ‘tolerogenic’ HSCT therapy.
http://www.sciencedirect.com/science...68997212002455