This blew my tiny little mind last night!
"In contradiction to decades of medical education, a direct connection has been reported between the brain and the immune system. Claims this radical always require plenty of testing, even after winning publication, but this could be big news for research into diseases like multiple sclerosis (MS) and Alzheimer's.
"It changes entirely the way we perceive the neuro-immune interaction,” says Kipnis. “We always perceived it before as something esoteric that can't be studied. But now we can ask mechanistic questions."
MS is known to be an example of the immune system attacking the brain, although the reasons are poorly understood. The opportunity to study lymphatic vessels that link the brain to the immune system could transform our understanding of how these attacks occur, and what could stop them. The causes of Alzheimer's disease are even more controversial, but may also have immune system origins, and the authors suggest protein accumulation is a result of the vessels failing to do their job."
Read more: http://www.sciencedaily.com/releases...0601122445.htm
Original paper:
NATURE | LETTER
Structural and functional features of central nervous system lymphatic vessels
Antoine Louveau, Igor Smirnov, Timothy J. Keyes, Jacob D. Eccles, Sherin J. Rouhani, J. David Peske, Noel C. Derecki, David Castle, James W. Mandell, Kevin S. Lee, Tajie H. Harris & Jonathan Kipnis
Nature (2015) doi:10.1038/nature14432
Received 30 October 2014 Accepted 20 March 2015 Published online 01 June 2015
One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment1, 2, 3, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood4, 5, 6. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.
http://www.nature.com/nature/journal...ture14432.html
"In contradiction to decades of medical education, a direct connection has been reported between the brain and the immune system. Claims this radical always require plenty of testing, even after winning publication, but this could be big news for research into diseases like multiple sclerosis (MS) and Alzheimer's.
"It changes entirely the way we perceive the neuro-immune interaction,” says Kipnis. “We always perceived it before as something esoteric that can't be studied. But now we can ask mechanistic questions."
MS is known to be an example of the immune system attacking the brain, although the reasons are poorly understood. The opportunity to study lymphatic vessels that link the brain to the immune system could transform our understanding of how these attacks occur, and what could stop them. The causes of Alzheimer's disease are even more controversial, but may also have immune system origins, and the authors suggest protein accumulation is a result of the vessels failing to do their job."
Read more: http://www.sciencedaily.com/releases...0601122445.htm
Original paper:
NATURE | LETTER
Structural and functional features of central nervous system lymphatic vessels
Antoine Louveau, Igor Smirnov, Timothy J. Keyes, Jacob D. Eccles, Sherin J. Rouhani, J. David Peske, Noel C. Derecki, David Castle, James W. Mandell, Kevin S. Lee, Tajie H. Harris & Jonathan Kipnis
Nature (2015) doi:10.1038/nature14432
Received 30 October 2014 Accepted 20 March 2015 Published online 01 June 2015
One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment1, 2, 3, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood4, 5, 6. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.
http://www.nature.com/nature/journal...ture14432.html